
> >

> >

> >

Advanced Math Improvements in Maple 2025
Maple 2025 includes many improvements to the math engine.

PartiallyOrderedSets
Maple 2025 contains a new package for computing with partially ordered sets, also
known as posets. After considering a random poset, we illustrate the capabilities of this
package with four examples taken from different fields of mathematics.

with(PartiallyOrderedSets):

A partially ordered set is a set equipped with a relation that is reflexive, antisymmetric,
and transitive. For this package, only finite sets are considered. The relation is usually
denoted by the relator.

A random poset
Posets can be constructed in various ways. One way is to supply an adjacency matrix.
Below, we generate a random matrix that is valid as an adjacency matrix for a poset:
we first generate a fully random 0-1 matrix with appropriate density, set its lower
triangle to 0 and its diagonal to 1, and then find the transitive closure.

n := 25:

L := LinearAlgebra:-RandomMatrix(n, generator=1, density=1/3);

> >

> >

> >

« « « « « « « « « « «

 …

 …

 …

 …

 …

 …

 …

 …

 …

 …

 …

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

L := ArrayTools:-UpperTriangle(L):

L := max~(L, LinearAlgebra:-IdentityMatrix(n)):

L := min~(1, L^n);

> >

«« « « « « « « « « «

 …

 …

 …

 …

 …

 …

 …

 …

 …

 …

 …

 …

 …

 …

 …

 …

 …

 …

 …

 …

 …

 …

166 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

Now we generate the poset. We specify the base set (in this case, the integers 1
through n) and the relation (defined by L).

random_poset := PartiallyOrderedSet([seq(1 .. n)], L);

> >

We can visualize this poset in multiple ways. The naive way would be to draw an arrow
between every pair of related elements, as follows.

DrawGraph(random_poset, reduction = false);

This does not give much insight. A better approach is showing the so-called Hasse
diagram, where we only show an arrow from a to c if and there is no b such that

.

> >

> >

> >

> > DrawGraph(random_poset);

The poset of the divisors of a positive integer
We define the relation of divisibility as a procedure, and create the poset on the
divisors of 2025 using this procedure.

divisibility := (x, y) -> irem(y, x) = 0:

divisibility_poset := PartiallyOrderedSet(NumberTheory:-Divisors

(2025), divisibility);

We display this poset.

DrawGraph(divisibility_poset);

> >

> >

> >

There are a number of properties that a poset may or may not have that we can test
using this package. A poset is graded if its elements can be partitioned into numbered
subsets such that the immediate successors of the entries of subset n are numbered

.

IsGraded(divisibility_poset);

true

A poset is ranked if its maximal chains (that is, subsets where every element is related
to every other element) all have the same cardinality. Every ranked poset is graded,
but this is not true the other way around.

IsRanked(divisibility_poset);

true

A poset is a lattice if every pair of elements has a smallest upper bound and a greatest
lower bound.

IsLattice(divisibility_poset);

true

> >

> >

> >

> >

A poset is a face lattice if it is isomorphic to the face lattice of a polyhedral set (see
below).

IsFaceLattice(divisibility_poset);

true

The face lattice of a polyhedral set
A polyhedral set is the intersection of a finite number of half spaces. An example is a
tetrahedron.

t := PolyhedralSets:-ExampleSets:-Tetrahedron();

:

:

PolyhedralSets:-Plot(t);

d := PolyhedralSets:-Dimension(t);

> >

> >

> >

> >

> >

The faces of a polyhedral sets are the vertices, edges, and higher-dimensional
boundaries of the polyhedral set. We sometimes also include the empty subset.

t_faces := {seq(op(PolyhedralSets:-Faces(t, dimension = i)), i = 0

.. d), PolyhedralSets:-ExampleSets:-EmptySet(d)}:

face_list := convert(t_faces, list):

We now construct the face lattice, ordered by inclusion.

inclusion := (x, y) -> PolyhedralSets:-`subset`(face_list[x],

face_list[y]);

:L

polyhedral_poset := PartiallyOrderedSet({seq(1 .. numelems

(face_list))}, inclusion);

DrawGraph(polyhedral_poset);

> >

> >

> >

> >

> >

We verify some properties of this poset.

IsGraded(polyhedral_poset);

true

IsRanked(polyhedral_poset);

true

IsLattice(polyhedral_poset);

true

IsFaceLattice(polyhedral_poset);

true

The width of a poset is the size of the largest antichain (a set where every pair of
elements is not related).

Width(polyhedral_poset);

6

> >

> >

> >

> >

> >

> >

> >

> >

> >

The height of a poset is the size of the largest chain.

Height(polyhedral_poset);

5

The lattice of the flats of a matroid
Consider the Fano matroid. Its flats form a partially ordered set, ordered by inclusion.
We ensure compact display of the flats with some custom procedures.

M := Matroids:-ExampleMatroids:-Fano();

F := Matroids:-Flats(M);

:

compact_display := proc(s :: set, $)

if s = {} then

 return "∅";

else

 return String(seq(s));

end if;

end proc:

Compact_F := map(compact_display, F);

Expand_F := table(zip(`=`, Compact_F, F));

:

inclusion := (x, y) -> Expand_F[x] subset Expand_F[y];

matroid_poset := PartiallyOrderedSet({op(Compact_F)}, inclusion);

DrawGraph(matroid_poset);

> >

> >

> >

> >

:

Observe that this is the lattice of the faces of a polyhedral set, but not of the
tetrahedron.

IsLattice(matroid_poset);

true

IsFaceLattice(matroid_poset);

true

AreIsomorphic(polyhedral_poset, matroid_poset);

false

The poset of the partitions of a set
The partitions of a set are partially ordered by the "finer-than" relation. One partition
X is finer than another partition Y if each set in X is a subset of a set in Y .

P := combinat:-setpartition({1,2,3,4});

> >

> >

> >

> >

> >

> >

> >

IsFiner := proc(X :: set(set), Y :: set(set), $)

for local x in X do

 if not ormap(y -> x subset y, Y) then

 return false;

 end if;

end do;

return true;

end proc:

Again we ensure compact display with some custom procedures.

compact_display_2 := (s :: set(set)) -> StringTools:-Join(map

(compact_display, [op(s)]), "|");

:L

compact_P := map(compact_display_2, [op(P)]);

expand_P := table(zip(`=`, compact_P, [op(P)])):

compactIsFiner := (x, y) -> IsFiner(expand_P[x], expand_P[y]);

partition_poset := PartiallyOrderedSet(convert(compact_P, set),

compactIsFiner);

DrawGraph(partition_poset);

> >

> >

> >

This is another face lattice.

IsFaceLattice(partition_poset);

true

simplify
Maple 2025 introduces several important improvements to simplify regarding
expressions containing exponential, trigonometric, and/or inverse trigonometric
functions. These updates also bring beneficial ripple effects across the Maple library.

New and improved conversion of exp to trig
simplify now recognizes when exponentials can be profitably converted to hyperbolic
trig functions:

restart;

simplify(exp(x)-exp(-x));

> >

> >

> >

> >

> >

> >

simplify((exp(x)-1)/(exp(x)+1));

simplify(1/4/(1/2*exp(1)-1/2*exp(-1))*(exp(3)-exp(-3)-exp(1)+exp

(-1)));

Moreover, conversion to non-hyperbolic trig functions is now recognized in more cases
than previously:

simplify(I*(exp(2*I*x*y)+exp(-2*I*x*(-2+y)))/(exp(4*I*x)-1));

Simplification of expressions with exp or trig is more careful
In general, simplification w.r.t. exp is now more careful to avoid unnecessary
expansions and normalizations. This result is now significantly more compact:

simplify(1/2*(-sin(t-x)*exp(I*1/6*abs(t-x))-cos(3*t-3*x))*exp(-

I/6*abs(t-x)));

e

In certain cases involving trigonometric functions, simplify now tries harder to get a
fully simplified answer before returning:

simplify(-sin(2)^2/2 - cos(2)^2/2 - sin(2)*cos(x - 1)*sin(x - 1) +

cos(2)*cos(2*x - 2)/2);

Improved simplification of expressions with inverse trigonometric
functions

Trigonometric functions with logarithms or inverse trig functions in their arguments are
now converted to a simpler form without trig and arctrig/ln when it can be determined
that it leads to a simpler result:

simplify(cos(ln(2)+arctanh(x))-2^(-1+I)*(1-x)^(-1/2*I)*(x+1)^(1/2*

I));

> >

> >

> >

> >

> >

> >

> >

> >

simplify also now recognizes when converting arctan or arctanh to ln reduces the size
of the expression:

simplify(2*arctanh(x) + ln(1 - x));

Conversion of exp(ln(t)) and exp(Pi*I*t)
A trivial simplification was previously missed (it should be noted, this input is rare due
to the uneval quotes; without them exp itself would make this simplification):

simplify('exp'(ln(t)));

t

While simplify does not by default convert exp(Pi*I*t) to a power for symbolic t, it will
now do so if it detects that the resulting power already exists in the expression:

simplify((1+(-1)^t)/exp(Pi*I*t));

Resulting improvements to other library commands
The aforementioned improvements to simplify have had knock-on effects in other areas
of the Maple library. For example, this limit is now computed correctly:

q := exp(s*t)/s/cosh(s):

p := (2*n+1)/2*Pi*I:

limit((s-p)*q, s=p) assuming n::integer;

e

and these results are more compact:

Student:-Calculus1:-SurfaceOfRevolution(cosh(x), x=-Pi..Pi, axis=

vertical);

dsolve({diff(y(x),x,x)-2*y(x)=0, y(0)=1.2, y(1)=0.9});

> >

> >

> >

> >

pdsolve([diff(u(x, y), x, x)+diff(u(x, y), y, y)-k*u(x, y) = 0, u

(0, y) = 1, u(Pi, y) = 0, u(x, 0) = 0, u(x, Pi) = 0]) assuming k >

0;

SumTools
Two new commands were added to the SumTools[DefiniteSum] subpackage to test for
convergence of an infinite series and find its convergence radius. See Radius of
Convergence for details.

Numerical Inverse Laplace Transform
Users on MaplePrimes have long requested an efficient method of numerically inverting
a transfer function for which no symbolic inverse exists. In response, in Maple 2025
there is a new quadrature method for computing numerical inverse Laplace transforms,
which is available by using the numeric option to the inttrans:-invlaplace command.
The new calling sequence takes an expression or procedure and produces an Array of
evaluation values of the inverse transform. See inttrans/invlaplace/numeric for details.

expr := exp(0.3*s)*sinh(0.5*sqrt(s))/(s*(sqrt(s)*cosh(sqrt(s)) +

s));

e

No symbolic inverse exists.

inttrans:-invlaplace(expr, s, t);

e

Numerical inversion

numerical_inversion := inttrans:-invlaplace(expr, 100, 0.01,

'numeric');

> >

> >

«

1

2

3

4

5

6

7

8

9

10

11

Plot the simulated result.

Times := Vector(100, i -> (i-1)*0.01):

plot(Times, numerical_inversion);

> >

> >

Solver for complex functions
The new command SolveTools:-ComplexSolve uses some transformations to produce
better complex-valued solutions to equations involving abs and conjugate z than
solve.

SolveTools:-ComplexSolve({ abs(z)^2 + z*abs(z) + conjugate(z) },

{z});

PolyhedralSets
In Maple 2025, the PolyhedralSets package has a number of new features, which we
illustrate with the examples below.

restart;

> >

> >

> >

> >

with(PolyhedralSets):

with(ExampleSets):

Computing the number of integer points for non-parametric polyhedral
sets

The generating function of a polyhedral set in a space with coordinate variables

 is the formal sum of the monomials , where iterates over all

integer points in the polyhedral set. Here is an example.

ps := Tetrahedron();

:

:

Plot(ps);

> >

> >

> >

> >

> >

> >

> >

From the plot, we can see that this polyhedral set has all its coordinates between
and 1. So we can enumerate all points in that box, and test if the relations defining the
polyhedral set hold. This gives us the number of integer points.

relations := Relations(ps);

candidates := [seq(seq(seq([i, j, k], i=-1..1), j=-1..1), k=-1..1)

];

points_inside := select(c -> andmap(r -> eval(r, [x[1], x[2], x[3]

] =~ c), relations), candidates);

numelems(points_inside);

11

We can automate this process partially by computing the generating function, using

the new GeneratingFunction command. The generating function has a term

for every integer point in the polyhedral set; for example,
x

2
 for the point

.

gps := GeneratingFunction(ps);

If we substitute 1 for each of the coordinate variables, this gives us the number of
integer points.

eval(gps, [x[1], x[2], x[3]] =~ 1);

11

We can automate this even further by using the new NumberOfIntegerPoints
command.

> >

> >

> >

> >

> > NumberOfIntegerPoints(ps);

11

Consider another rational polyhedral set.

ps := TruncatedOctahedron();

:

:

Plot(ps);

NumberOfIntegerPoints(ps);

7

Computing the number of integer points for parametric polyhedral sets
The NumberOfIntegerPoints command can also compute the number of integer points
for parametric polyhedral sets, that is, a polyhedral set where the defining relations

> >

> >

> >

> >

> >

> >

include one or more parameters. This sort of analysis often occurs when analyzing
nested loops in compiler optimization. For example, here is a right triangle with n
points on each leg:

parametric_triangle := [1 <= i, i <= n, 1 <= j, j <= i];

We can plot a parametric triangle only if we specialize the parameters to a concrete
value. Here we specialize to .

ps := PolyhedralSet(eval(parametric_triangle, n=10));

:

:

Plot(ps);

We can of course compute the number of integer points of this specialized triangle.

NumberOfIntegerPoints(ps);

55

> >

> >

> >

> >

> >

> >

> >

> >

> >

To compute the number of integer points of the parametric triangle, we need to tell
Maple which of the variables are meant to be coordinate variables and which are meant
to be parameters. When we do so, we get back a formula for the number of integer
points in terms of the parameter, n.

np := NumberOfIntegerPoints(parametric_triangle, [i, j], [n],

output = piecewise);

eval(np, n = 10);

The following parametric triangle is more complicated, because the formula is different
depending on whether n is even or odd.

parametric_triangle_2 := [1 <= i, j <= n, 2*i <= 3*j];

ps_8 := PolyhedralSet(eval(parametric_triangle_2, n=8));

:

:

ps_9 := PolyhedralSet(eval(parametric_triangle_2, n=9));

:

:

ps_10 := PolyhedralSet(eval(parametric_triangle_2, n=10));

:

:

Plot([ps_8, ps_9, ps_10]);

> >

> >

> >

> >

> >

> > NumberOfIntegerPoints(ps_8);

52

NumberOfIntegerPoints(ps_9);

65

NumberOfIntegerPoints(ps_10);

80

NumberOfIntegerPoints(parametric_triangle_2, [i, j], [n], output =

piecewise);

> >

> >

> >

> >

> >

> >

> >

> >

This computation gives rise to a so-called quasi-polynomial. A quasi-polynomial is an
expression given by an integer m (the modulo), a list of m polynomials (the

constituents), and a so-called switch s, which is a linear polynomial. The expression
takes on the value f

i
 whenever s is equal to i modulo m. In other words, it is a

polynomial with coefficients that are periodic functions, all with the same integral
period. In this case, and : the result is given by one of two polynomials,
depending on the parity of n.

The easiest way to deal with such quasi-polynomials is when they occur inside
ValuesUnderConstraints objects, described in a section below, which the
NumberOfIntegerPoints command generates by default for parametric polyhedral sets.

np := NumberOfIntegerPoints(parametric_triangle_2, [i, j], [n]);

with(ValuesUnderConstraints):

Eval(np[1], n=8);

Eval(np[1], n=9);

Eval(np[1], n=10);

The polyhedral set below depends on two parameters, m and n. The shape can be a
triangle or a quadrangle, depending on the parameter values. In the display below, all
shapes extend to the lower left; the blue region contains the red, and the green
contains both.

parametric_polytope := [1 <= i, j <= n, i <= m, 3*i <= 5*j];

> >

> >

> >

> >

> >

> >

ps23 := PolyhedralSet(eval(parametric_polytope, {m=2, n=3}));

:

:

ps74 := PolyhedralSet(eval(parametric_polytope, {m=7, n=4}));

:

:

ps86 := PolyhedralSet(eval(parametric_polytope, {m=8, n=6}));

:

:

Plot([ps23, ps74, ps86]);

> >

> >

> >

> > map(NumberOfIntegerPoints, [ps23, ps74, ps86]);

We first view the number of integer points, which is easiest as follows. Then we
evaluate the results for the configurations we displayed above.

NumberOfIntegerPoints(parametric_polytope, [i, j], [m, n], output

= piecewise);

> >

> >

> >

> >

> > np := NumberOfIntegerPoints(parametric_polytope, [i, j], [m, n]);

> >

> >

> >

> >

> >

> >

> >

> >

map(Eval, np, {m=2, n=3});

map(Eval, np, {m=7, n=4});

map(Eval, np, {m=8, n=6});

The following 3-dimensional polyhedral set depends on two parameters, m and n. For
this example, the geometry varies with the values of the parameters.

parametric_polytope_2 := [1 <= i, i <= n, j <= m, 1 <= j, j <= i,

1 <= k, k <= j];

ps46 := PolyhedralSet(eval(parametric_polytope_2, {m=4, n=6}));

:

:

ps97 := PolyhedralSet(eval(parametric_polytope_2, {m=9, n=7}));

> >

> >

> >

> >

> >

> >

:

:

Plot([ps46, ps97], transparency=[0, 0.5], orientation=[18, 54, -1]

);

NumberOfIntegerPoints(ps46);

40

NumberOfIntegerPoints(ps97);

84

np := NumberOfIntegerPoints(parametric_polytope_2, [i, j, k], [m,

n], output = piecewise);

> >

> >

> >

> >

In this case, the result does not contain any quasi-polynomials.

eval(np, {m=4, n=6});

eval(np, {m=9, n=7});

The examples in this section come from the following reference:

Rui-Juan Jing, Yuzhuo Lei, Christopher F. S. Maligec, Marc Moreno Maza: Counting the
Integer Points of Parametric Polytopes: A Maple Implementation. In the
proceedings of Computer Algebra in Scientific Computing: 26th International Workshop,
pp. 140-160.

VerifyTools
In earlier versions of Maple, testing and verifying properties could be done using the
verify command which came with a number of useful pre-built verification methods. For
Maple 2025, we introduce the package VerifyTools which allows users to extend this
system to include their own personally defined verifications. While any given
verification could be simulated by writing an equivalent procedure, the great
advantage of using VerifyTools is the ability to combine various user-defined and/or
system verifications together in a structured verification.

VerifyTools is similar to the TypeTools package. A type is essentially a predicate that a
single expression can either satisfy or not. Analogously, a verification is a predicate
that applies to a pair of expressions, comparing them. Just as types can be combined to
produce compound types, verifications can also be combined to produce compound, or
structured, verifications. New types can be created, retrieved, queried, or,deleted using
the commands AddType, GetType (or GetTypes), Exists, and RemoveType, respectively.

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

Similarly in the VerifyTools package we can create, retrieve, query, or delete
verifications using AddVerification, GetVerification (or GetVerifications), Exists, and
RemoveVerification.

The package command VerifyTools:-Verify is also available as the top-level Maple
command verify which should already be familiar to expert Maple users. Similarly, the
command VerifyTools:-IsVerification is also available as a type, that is,

VerifyTools:-IsVerification(ver);

false

will return the same as

type(ver, 'verification');

false

In the following examples we show what can be done with these commands.

with(VerifyTools):

Suppose we want to create a verification which checks that the length of a result has
not increased compared to the expected result. We can do this using the
AddVerification command:

AddVerification(length_not_increased, (a, b) -> evalb(length(a) <=

length(b)));

First, we can check the existence of our new verification and get its value:

Exists(length_not_increased);

true

GetVerification(length_not_increased);

For named verifications, IsVerification is equivalent to Exists (since names are only
recognized as verifications if an entry exists for them in the verification database):

IsVerification(length_not_increased);

true

On the other hand, a nontrivial structured verification can be checked with
IsVerification,

IsVerification(boolean = length_not_increased);

true

whereas Exists only accepts names:

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

Exists(boolean = length_not_increased);

Error, invalid input: VerifyTools:-Exists expects its 1st argument,

x, to be of type symbol, but received boolean = length_not_increased

The preceding command using Exists is also equivalent to the following type call:

type(boolean = length_not_increased, verification);

true

Now, let's use the new verification:

Verify(x + 1/x, (x^2 + 1)/x, length_not_increased);

true

Verify((x^2 + 1)/x, x + 1/x, length_not_increased);

false

For a more complicated example, suppose we have two lists of results, one expected
and the other newly computed:

expected_results := [(x^2+1)/x, 2*sin(t)*cos(t)];

computed_results := [sin(2*t), x + 1/x];

We want to verify two things: that the computed results are mathematically equal to the
expected results, though they may have a different form (we can use the simplify
verification for this), and that the length of the computed results are not larger than those
expected (we use our custom verification, length_not_increased, for this). Moreover, the
entries in the lists can be in a different order, so we can use the as_set verification for this.
Putting all of this together, we would use the following structured verification:

verify(computed_results, expected_results, as_set(And(simplify,

length_not_increased)));

true

In previous versions of Maple, we could have written a procedure to do this work, but we
would have had to re-implement at least the as_set verifications: it works only when the
relation between the elements of the "sets" can be expressed as a verification.

Finally, let's remove the verification:

RemoveVerification(length_not_increased);

> >

> >

> >

> >

> >

> > Exists(length_not_increased);

false

GetVerification(length_not_increased);

Error, (in VerifyTools:-GetVerification) length_not_increased is not

a recognized verification

GetVerifications returns the list of all verifications known to the system:

GetVerifications();

Note: VerifyTools has been available in Maple for roughly 24 years, but until now it has
never been documented, as it was originally intended for internal use only. Some of the
VerifyTools commands have been revised for this release.

Improvements in Generating Random Expressions
The RandomTools:-GenerateSimilar command can produce a new expression that
shares characteristics with a given expression. One use of this is in generating similar
problems for student practice. With Maple 2025, we’ve improved this capability to
include making it even easier for students to practice differentiation problems by
producing a new differentiation problem that requires the same core steps required to
find the solution as the given problem.

In addition, for convenience an option has been added to facilitate the creation of a list
of random expressions instead of just one. For details, see Improved Ability to Generate
Similar Problems.

Improved Units Support
max and min now offer built-in Units support for simple inputs. Prior to Maple 2025 it

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

was required that one of the Units packages, for example, Units:-Simple, be loaded,
otherwise max and min would return unevaluated

max(3*Unit(m),2*Unit(m));

The sort command now supports inputs containing Units.

sort([3*Unit(m),4*Unit(ft),10*Unit(ft)]);

The fdiff command now supports units as well.

fdiff(2.3*Unit(m/s)*t + 1/2 * 9.81 * Unit(m/s^2)*t^2, t=2.1*Unit

(s));

List and Vector Form for fsolve
The fsolve command now accepts its equations, variables, and ranges options in list or
Vector form. The form in which the variables are specified determines the form for the
returned solutions. Using list or Vector form to specify the variables will preserve their
order in the solutions. If the variables are specified in Vector form then the solution
contains the ordered numeric values rather than equations for each variable. For the
following example the result is a list in which the y-value solution appears first,
matching the order of the specified list of variable names.

fsolve(<x^2-y-3=0, x+y=4>, [y,x], {y=4..8});

Ceil, Floor, Round, Trunc
Four new top-level commands have been added that round to integer multiples of a
given second argument. Each of these has the same behavior as the corresponding
lowercase version of the command. More details and examples on the Trunc help page.
Some common use cases of these commands would be round to multiples of 10,
multiples of , or to do conversions to nearest integer multiples of units.

restart;

Floor(72*Pi, 10);

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

220

Floor(72*Pi, 0.01);

226.19

Ceil(27, Pi);

Trunc(14, sqrt(3));

Round(45*Unit(miles), Unit(km));

Identifying an Integer Sequence from Its First Terms
The new command IdentifySequence attempts to find a formula for the nth term of the
sequence of integers that you input.

IdentifySequence([1, 3, 5, 7, 9], 'n');

For more information, see Find a Formula for the nth Term of a Given Integer
Sequence.

Improvements to evala
Two new primitives RealPart and ImaginaryPart have been added to the evala
command. These compute a RootOf expression of smallest possible degree for the real
or imaginary part(s), respectively, of a given RootOf.

f := RootOf(x^4+x-1, 'index'=4):

re, im := evala(RealPart(f)), evala(ImaginaryPart(f));

evalf(f), evalf(re), evalf(im);

In earlier versions of Maple, the evalc@Re and evalc@Im calling sequences provide
similar functionality. However, in this example they return radicals instead of RootOf

> >

> >

> >

> >

> >

> >

> >

expressions.

evala(Re(f)), evala(Re(g));

The new commands also work for a RootOf with interval selector.

f := RootOf(x^4+x-1, -2*I..1/2);

re, im := evala(RealPart(f)), evala(ImaginaryPart(f));

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

evalf(f), evalf(re), evalf(im);

The new commands accept a RootOf without a selector. The defining polynomial of the
resulting RootOf has all the real/imaginary parts of the input as roots, but in general
has additional roots.

g := RootOf(x^4+x-3);

re, im := evala(RealPart(g)), evala(ImaginaryPart(g));

fsolve(op(g), 'complex');

The second real root of the following polynomial closest to the origin does not
correspond to a real part.

fsolve(op(re));

fsolve(op(im));

fsolve(op(im), 'complex');

In this example, evalc used to return RootOfs with higher degree.

r := [evalc(Re(g)),evalc(Im(g))];

map(factor@op, r);

> >

> >

> >

> >

> >

> >

> >

> >

> >

The Chebyshev polynomials of the first kind have the real parts of the roots of unity as
roots.

evala(RealPart(RootOf(x^(2*5)+1)));

expand(ChebyshevT(5,_Z));

Here, the degree of the RootOf returned by evalc is much higher, and almost all of the
factors are spurious.

evalc(Re(RootOf(x^(2*5)+1)));

factor(op(Function Call));

ExpressionTools
A new package ExpressionTools was created which provides some tools for comparing
expressions and highlighting their differences. For more information, see Tools for
Comparing Expressions

ValuesUnderConstraints
The ValuesUnderConstraints package is a new Maple package for Maple 2025, which is
designed to support the implementation of algorithms with output, or values,
depending on parameters. In other words, this new package facilitates the
implementation of mechanisms for case discussion. The core concept in the package is

> >

> >

> >

> >

> >

> >

> >

> >

> >

that of a pair consisting of one or more values (arbitrary algebraic expressions)
together with constraints under which these values are valid. In those pairs, variables
can be real-valued or integer-valued, while constraints can be equalities or inequalities
between polynomials in those variables. While polynomials of arbitrary degree are
supported, the current version of this package is optimized for linear constraints.

with(ValuesUnderConstraints):

Comparing the domains of several functions
Consider two functions and , together with their domains of
definition. When are both defined, and when is only one of them defined? The
command MakeCaseDiscussion answers these questions by computing a partition of
the union of the domains so that on each part of this partition either , or

, or both are defined.

vc1 := ValueUnderConstraints([f(a, b, c, d)], [a <> 0, b < 0, c >

0, d <> 0]);

vc2 := ValueUnderConstraints([g(a, b, c, d)], [c <> 0, d > 0, a <

0, b <> 0]);

MakeCaseDiscussion([vc1, vc2], output = piecewise);

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

Consider four pairs of values and constraints.

vc1 := ValueUnderConstraints([1], [a = 0, b >= 0, c < 0, d <> 0])

;

vc2 := ValueUnderConstraints([2], [b = 0, a >= 0, d <> 0, c > -1])

;

vc3 := ValueUnderConstraints([3], [a <> 0, b >= 0, c < 0, d = 0])

;

vc4 := ValueUnderConstraints([4], [b <> 0, a >= 0, d <> 0, c = 0])

;

Use MakeCaseDiscussion to check which of these four pairs have intersecting domains.

MakeCaseDiscussion([vc1, vc2, vc3, vc4], output = piecewise);

Distinguishing between real-valued and integer-valued variables
Let's modify the four pairs above and specify that their variables are integer-valued.

vc1i := ValueUnderConstraints([1], [a = 0, b >= 0, c < 0, d <> 0],

{a, b, c, d});

vc2i := ValueUnderConstraints([2], [b = 0, a >= 0, d <> 0, c >

-1], {a, b, c, d});

> >

> >

> >

> >

> >

> >

> >

> >

vc3i := ValueUnderConstraints([3], [a <> 0, b >= 0, c < 0, d = 0],

{a, b, c, d});

vc4i := ValueUnderConstraints([4], [b <> 0, a >= 0, d <> 0, c =

0], {a, b, c, d});

Use MakeCaseDiscussion and observe the difference between the result here and the
result above for the real-valued case.

MakeCaseDiscussion([vc1i, vc2i, vc3i, vc4i], output = piecewise);

