GraphTheory Updates in Maple 2025

Description

A substantial effort was put into Graph Theory for Maple 2025, including new commands
for graph computation and generation.

> wit h(G aphTheory):

New commands

AllSimplePaths
The new AllSimplePaths command returns an iterator with which one can step through all
paths from a given vertex to another vertex in a directed graph.

> Gl = Gaph({["A", "B'], ["A", "D'], ["B", "C], ['C', "E'], ["D,
"B
G1 = Graph 1: a directed graph with 5 vertices and 5 arcs

> DrawG aph(Gl);

> jterator := Al SinplePaths(GL, "A", "E");

iterator =:[Path Iterator]

> jterator:-getNext();
[HAH’ HDH’ HEH]
> jterator:-getNext();
I:"AH’ "B") "CH) HEH]

> iterator:-hasNext();
false

Ancestors and Descendants

The new Ancestors command returns a list of ancestors of the given vertex in the given
directed graph. The related new command Descendants returns a list of descendants of
the given vertex.

> Ancestors(GL, "A");
[]
> Ancestors(Gl, "E");
[HAH’ HBH’ HCH’ HDH]

> Descendants(Gl, "A");
I:HBH’ "CH, HDH, HEH]

FindCycle
The new FindCycle command finds a cycle, if one exists in the given graph.

> Fi ndCycl e(Q1) ;
L]

> FindCycle(Graph({["A", "B'], ["B", "C'], ["C', "A"]}));
["C", "A", "B", "C"]

IsCaterpillarTree and IsLobsterTree

The new [sCaterpillarTree command tests whether the graph is a caterpillar tree, a tree for
which there is some path such that every vertex is either on the path or the neighbor of a
vertex on the path.

> CT := Gaph({{1,4},{2,4},{3,4},{4,5},{5,6},{6,7},{7,8},{7,9}});

CT = Graph 2: an undirected graph with 9 vertices and 8§ edges

> DrawG aph(CT);

@

8 9
> | sCaterpillarTree(CT);

true

The new IsLobsterTree command tests whether the graph is lobster tree, a tree such that
the result of removing all leaf vertices is a caterpillar tree.

> LT := Gaph({{1,2},{2,3},{3,4},{4,5},{3,6},{6,7},{3,8},{8,9}});
LT := Graph 3: an undirected graph with 9 vertices and 8 edges

> DrawG aph(LT);

© ©) @
> | sLobsterTree(LT);

true

> |sCaterpillarTree(LT);
false

IsPlatonicGraph

The new IsPlatonicGraph command tests whether the graph is Platonic. The Platonic
graphs consist of those graphs whose skeletons are the Platonic solids (polyhedra whose
faces are identical).

> | sPl at oni cG aph(Speci al Graphs: - CubeG aph());

true

LongestPath

The new LongestPath command computes the longest path within a given (directed)
graph.

> Longest Pat h(Gl) ;
[HAH’ HB", "CH’ HEU]

LowestCommonAncestors

The new LowestCommonAncestors command computes the set of lowest common
ancestors in a given directed graph.

> Lowest CormbnAncestors(GL, "C', "D');
{HAH}
ModularityMatrix

The new ModularityMatrix command computes the modularity matrix of the graph G.

> Modul arityMatrix(Gl);

0 1 0 1 0
2 1 1 .
5 5 5 5
2 1] 1 1
B 5 5 5
2 1] 1 1
5 5 5 5
4 2 2 2
- —-= = = 0
5 5 5 5

ResistanceDistance
The new ResistanceDistance command computes the resistance distance of the graph G.

> Resi stanceDi st ance(Speci al Graphs: - CubeG aph());

. 7 7 3 7 3 3 5
2 12 4 12 4 4
7 . 3 7 3 7 5 3
12 4 12 4 2 6 4
3 . 7 3 3
12 4 12 4 12 4
3 7 . 3 3
4 2 12 4 4 12
7 3 3 5 . 7 7 3
12 4 4 6 2 12 4
3 3 7 . 3
4 12 4 12 4 12
3 5 7 3 7 3 . 7
4 12 4 12 4 12
5 3 3 7 3 7 7 .
6 4 4 12 4 2 12

ShortestAncestralPath and ShortestDescendantPath

The new ShortestAncestralPath constructs the shortest ancestral path between two nodes
in the given directed graph.

> Shortest Ancestral Path(GL, "C', "D') ;
[[HAH’ HB") "CH]’ [HAH’ HDH]]

You can similarly find the shortest descendent path.

New functionality for existing commands

IsReachable and Reachable

The IsReachable and Reachable commands now have a new option distance to constrain
the distance within a given vertex.

> | sReachabl e(G1, "A", "E', distance =1);
false

> Reachabl e(Gl1, "A", distance =1);

[HAH’ HBH’ HDH]

ShortestPath

The ShortestPath command accepts an option avoidvertices to constrain the search space
for a shortest path to avoid some specified set of vertices.

> ShortestPath(GL, "A", "E');
I:"AH’ "DH’ "E"]

> ShortestPath(GL, "A", "E', avoidvertices = {"D'});
I:HAH’ HBH’ HCH’ HEH]

Additions to SpecialGraphs

The SpecialGraphs subpackage now includes commands for the F26a graph and Hanoi
graph.

* The F26a graph may be understood visually

> FG : = Speci al G aphs: - F26AG aph() ;
FG == Graph 4: an undirected graph with 26 vertices and 39 edges

> DrawG aph(FG) ;

* The Hanoi graph is a graph whose edges correspond to allowed moves of the tower of
Hanoi problem.

> HA : = Speci al G aphs: - Hanoi G- aph(4);
HG4 = Graph 5. an undirected graph with 81 vertices and 120 edges

