
MapleMBSE Configuration Guide

Copyright © Maplesoft, a division of Waterloo Maple Inc.
2019

MapleMBSE Configuration Guide

Contents
Introduction ... vii
1 Getting Started ... 1

1.1 Introduction ... 1
1.2 Overview of MapleMBSE Mapping ... 1
1.3 MSE Configuration Editor .. 2
1.4 Creating a Configuration File .. 7
1.5 An Introductory Example ... 11

2 Configuration Language Fundamentals .. 19
2.1 Notation .. 19
2.2 Overview of an MSE Configuration File .. 19
2.3 EcoreImport ... 20

3 Query Path Expression ... 21
3.1 Query Path Expression Definition .. 21

4 Data Source .. 25
5 SyncTable Schema ... 27

5.1 SyncTable Schema Definition .. 27
5.2 Examples of SyncTable Schema ... 28
5.3 Mapping the Attribute Values of the Model Elements to the Columns 28
5.4 Mapping the Dimensions to the Records .. 29
5.5 Alternative and Group Dimensions ... 30
5.6 ReferenceDecomposition and ReferenceQuery ... 34

Mapping reference values with ReferenceDecomposition and ReferenceQuery
... 34
ReferenceDecomposition by Example ... 34
References by Dimensions or ReferenceQuery .. 35

5.7 Key Columns Defined in SyncTable Schema .. 36
6 SyncTable .. 39
7 Laying out SyncViews .. 41

7.1 Setting up a Workbook and Worksheets ... 41
7.2 Worksheet Template and View Layout .. 42

Table View Layout .. 42
Matrix View Layout .. 44

iii

iv • Contents

List of Figures
Figure 1.1: Schematic Diagram of How MapleMBSE Works 2
Figure 4.1: Relationship between model elements .. 25
Figure 5.1: SimpleTree .. 28
Figure 5.2: SyncTable From Simple Tree .. 29
Figure 5.3: SyncTable From Simple Tree (add record keyword to top level
Dimension .. 30
Figure 5.4: Simplified Model Number Two: Using Alternative and Group 30
Figure 5.5: Tree From Simplified Model Two .. 31
Figure 5.6: Table Made From The Tree of Simplified Model Two 32
Figure 5.7: Another Tree Made From Simplified Model Two 33
Figure 5.8: Another Table Made From Simplified Model Two 33
Figure 5.9: Target Model .. 35
Figure 5.10: Illustration of ReferenceDecomposition .. 35

v

vi • List of Figures

Introduction
MapleMBSE Configuration Guide Overview
MapleMBSE™ gives an intuitive, spreadsheet based user interface for entering detailed
system design definitions, which include structures, behaviors, requirements, and parametric
constraints.

The configuration file specifies the rules for how your data from your model is extracted
and mapped into a table format along with how and where the extracted data is presented
in an Excel spreadsheet.

In the following chapters, this guide will provide detailed instructions on working with
configuration files and the configuration file language.

Related Products
MapleMBSE 2019 requires the following products.

• Microsoft® Excel® 2010 Service Pack 2, Excel 2016 or Excel 2019

• Oracle® Java® SE Runtime Environment 8.

Note:MapleMBSE looks for a Java Runtime Environment in the following order:

1) If you use the -vm option specified in OSGiBridge.init (not specified by default)

2) If your environment has a system JRE (meaning either: JREs specifed by the environment
variables JRE_HOME and JAVA_HOME in this order, or a JRE specified by the Windows
Registry (created by JRE installer)), MapleMBSE will use it.

3) The JRE installed in the MapleMBSE installation directory.

If you are using IBM® Rational® Rhapsody® with MapleMBSE, the following versions
are supported: Rational Rhapsody Version 8.1.5

• Teamwork CloudTM server 18.5 SP3 or 19.0 SP2

• Note that the architecture of the supported non-server products (that is, 32-bit or 64-bit)
must match the architecture of your MapleMBSE architecture.

vii

Related Resources
DescriptionResource

System requirements and installation instructions for
MapleMBSE. TheMapleMBSE Installation Guide is available
in the Install.html file located either on your MapleMBSE
installation DVD or the folder where you installed MapleMBSE.

MapleMBSE Installation
Guide

Instructions for using MapleMBSE software. TheMapleMBSE
User Guide is available in the folder where you installed
MapleMBSE.

MapleMBSE User Guide

Applications in this directory provide a hands on demonstration
of how to edit and construct models using MapleMBSE. They,
along with an accompanying guide, are located in the Application
subdirectory of your MapleMBSE installation.

MapleMBSE Applications

For additional resources, visit http://www.maplesoft.com/site_resources.

Getting Help

To request customer support or technical support, visit http://www.maplesoft.com/support.

Customer Feedback

Maplesoft welcomes your feedback. For comments related to the MapleMBSE product
documentation, contact doc@maplesoft.com.

Copyrights
• Microsoft, Windows, Windows Server, Excel, and Internet Explorer are registered
trademarks of Microsoft Corporation.

• Teamwork Cloud, Cameo Systems Modeler, and MagicDraw are registered trademarks
of No Magic, Inc.

• Eclipse is a trademark of Eclipse Foundation, Inc.

• UML is a registered trademark or trademark of Object Management Group, Inc. in the
United States and/or other countries.

viii • Introduction

http://www.maplesoft.com/site_resources
http://www.maplesoft.com/support

1 Getting Started
1.1 Introduction
The goal of this section is to introduce the elements of the configuration and template files
and how they are connected together by defining a simple configuration file. The details
about the elements are given in the following chapters.

A configuration file defines what data from a model is accessible and how it is presented
in Excel. In order to do that, the configuration file must define the following elements.

• The content of the Excel workbook: how many and what types of worksheets it has.

• For each worksheet, define the area that is associated with the model data - the SyncView
area and how it is displayed.

• For each SyncView area define what model data is displayed using a SyncTable.

1.2 Overview of MapleMBSE Mapping
The primary purpose of MapleMBSE is to map diagram-based models in UML into a table
form that can be easily consumed and updated by an end user.

Mapping model information from diagram-based model form into table form requires a two
step process.

First, a SyncTable Schema must be defined to convert the model to an intermediate table
structure called a SyncTable.

A SyncTable Schema specifies how to find objects in a model starting with an object given
by a DataSource. A pair of a DataSource and a SyncTable Schema defines one SyncTable.

Next, the SyncView Layout must be defined for how the SyncTable is displayed on a
spreadsheet by specifying a layout and which columns of the SyncTable to include or omit.
The resulting part of the spreadsheet displaying the SyncTable is called SyncView. The
schematic flow of displaying a model in an Excel spreadsheet is shown in
Figure 1.1 (page 2).

1

Figure 1.1: Schematic Diagram of How MapleMBSEWorks

The definition of a DataSource, a SyncTable Schema, and a SyncView Layout is called an
MSE configuration. The language used to define an MSE configuration is called MSE
configuration language. In this guide we provide the specification of theMSE configuration
language. For notation used in the specification, seeNotation (page 19). MSE configuration
files are text files that can be edited and created with any text editor. However, it is recom-
mended to use MSE Configuration Editor which provides convenient syntax highlighting
and checking. For the installation instructions, seeMSE Configuration Editor (page 2).
Examples in this guide use the MSE Configuration Editor.

1.3 MSE Configuration Editor
TheMapleMBSE Configuration Editor (a.k.a MSE Editor) is provided in the same package
as MapleMBSE-Editor_<VERSION>.zip.

The MSE Editor is an Eclipse add-on, and you can install with the following steps:

1. Launch Eclipse (Oxygen).

2. Select Help, then Install New Software.

2 • 1 Getting Started

3. Click Add to display the Add Repository window.

1.3 MSE Configuration Editor • 3

4. In the Add Repository window click Archive.

5. Find and select the MapleMBSE-Editor_2019.0.zip file.

4 • 1 Getting Started

6. Click Open.

7. Click OK.

8. From the list of files, select MapleMBSE MSE Editor and then follow the instructions
shown in the dialog.

1.3 MSE Configuration Editor • 5

9. Click Next.

6 • 1 Getting Started

10. Click Next.

11. To proceed, accept the terms of the license agreements.

12. In the security warning dialog click Install Anyway.

13. Click Finish.

14. Restart Eclipse.

1.4 Creating a Configuration File
To use the editor, you first need to creat a project folder for your configuration file(s) in
your Eclipse workspace. Then, add an MSE file to your project file.

Note: Double-clicking an MSE file in the workspace launches the editor.

1.4 Creating a Configuration File • 7

To create the project folder and MSE file do the following:

1. In Eclipse, select File-> New-> Project-> General Project.

2. Click Next.

3. Enter a name for the project.

8 • 1 Getting Started

4. Check default location to save the project to your default Eclipse workspace. Otherwise,
enter the path to the workspace you want to save the project to.

5. Click Finish.

6. Right-click on the newly created project, then select New->File.

1.4 Creating a Configuration File • 9

7. Enter a name for the new file.

10 • 1 Getting Started

8. Click Finish.

1.5 An Introductory Example
In this example, we want to define a configuration that allows us to view and update top-
level packages in a UML model. The first step is to import the definition of a UML
metamodel. A metamodel, called an Ecore, defines the types of elements a UML model
may have and their relationships. The definitions inside the configuration file that allow us
to access different elements of a model rely on the structures defined by the imported
metamodels. To import an Ecore metamodel, use an EcoreImport construct as follows.

There are two steps in converting model data into its representation in Excel. First, we define
a SyncTable Schema that converts the data into an intermediate table called a SyncTable.

1.5 An Introductory Example • 11

In the second step, the SyncView Layout defines how a SyncTable is displayed on a
spreadsheet by specifying which SyncTable columns will be displayed, as well as their po-
sition and layout. The resulting part of the spreadsheet displaying the SyncTable is called
the SyncView.

A SyncTable Schema defines how a set of model elements is mapped to a table structure.
In this example, we define a SyncTable Schema called PackagesTable.

Note the MSE Editor performs some testing of the correctness of the defined structures.
The syntax error highlighting the closing bracket indicates that definition is incomplete
without defining a dimension.

We define the top level dimension to be an element of a Package type.

A dimension is a basic structure of a SyncTable schema. Each dimension corresponds to a
model element. The first dimension of a SyncTable Schema is a Top Level Dimension. It
represents the type of element to which the schema applies. Each following dimension is
defined with respect to the preceding one.

A dimension consists of columns. Each column represents an attribute of the element that
the dimension describes. To identify the element some of the columns must be designated
as key columns. They must represent the attributes of the element that would allow you to
identify it uniquely. Without the definition of the key column(s) the definition of the dimen-
sion is incomplete. It is indicated by a syntax error.

For a package, its name can identify it uniquely. We define a key column that corresponds
to the 'name' attribute of a Package class.

This SyncTable schema definition allows you to view, add and delete packages by referring
to their name. To create a SyncTable, the schema must be applied to aData Source. A Data
Source defines a set of model elements. The Data Source representing the top-level data
structure of a model has the name Root. This is a reserved name. The Root is declared as
follows.

12 • 1 Getting Started

The declaration specifies that the type of the top-level data structure is Model. You can see
the types and the structure of a UML model by opening the .uml file in a text editor. For
example, the following is a snippet from UserGuide.uml in the installer, found in the
<MapleMBSE>\Examples\UserGuide directory, where <MapleMBSE> is your
MapleMBSE installation directory.

<?xml version="1.0" encoding="UTF-8"?>
<uml:Model xmi:version="20131001"
xmlns:xmi="http://www.omg.org/spec/XMI/20131001"
xmlns:uml="http://www.eclipse.org/uml2/5.0.0/UML"
xmi:id="_D2UUEM_MEee6666BhKb4Cg" name="UserGuide">
<packagedElement xmi:type="uml:Package" xmi:id="_Oeqy0M_MEee6666BhKb4Cg"
name="Package1" visibility="public">

...
</packagedElement>
<packagedElement xmi:type="uml:Association" ...>
...

</packagedElement>
...

</uml:Model>

The text representation of the model is written in XML. The model and its content are rep-
resented by XML elements. The top-level element is defined by the start and end tags:
<uml:Model ...>
...

</uml:Model>

The element is a "uml:Model" that is of a type Model defined by the "uml" namespace. The
"uml" namespace is defined among the attributes of the Model element.
xmlns:uml="http://www.eclipse.org/uml2/5.0.0/UML"

The definition matches the EcoreImport we are using in the configuration file. So the type
"Model" used in the definition of the Root Data Source is the same as "uml:Model" in the
model file. We want to apply the PackageTable schema to define packages inside a model,
and the type of the data source it applies to is Package.We define a data source that represents
packages in a model as follows.

This statement defines a new data source called topPackages. The syntax
Root/packagedElementmeans we are looking at the Model elements inside theRoot
that are defined by the tagpackagedElement. The syntaxpackagedElement[Pack-
age]means we are choosing only those packagedElements that have type Package.

1.5 An Introductory Example • 13

Looking back at the UML file, we can see that packagedElement could have at least
two types: Package or Association. We are choosing only the ones of type Package.

To create a SyncTable we apply the SyncTable schema to the Data Source using angle
brackets.

The next step is to define how the SyncTable is represented in an Excel worksheet. We do
this by defining aWorksheet Template. We define a Worksheet Template called Pack-
ages.

The template uses one argument p of type PackagesTable. That is, p must be a
SyncTable created from the SyncTable schema PackagesTable.

TheWorksheet Template must define where the SyncView for the given argument is placed
and what orientation it has. In this example we choose the SyncView for the argument p to
be a vertical table (named tab1) and start in cell B3 (row 3, column 2). The section defining
tab1 is called SyncView Layout.

We also need to specify which columns of the SyncTable should be included in the Syn-
cView. A SyncTable column becomes a field in a SyncView record. A record is simply the
collection of fields. In a vertical SyncView a record is a row in the table and the fields are
the cells in the row (see theOperationsOverview section inChapter 2 of theMapleMBSE
User Guide for more details). Some fields in a record must be marked as key fields to in-
dicate that those fields are used to identify the record uniquely. In the PackageTables schema
there is only one column, PackageName. It is a key column and should be used as a key
field. PackageName is of the String data type. The definition of the SyncView layout is
then as follows.

14 • 1 Getting Started

We also want to indicate that the column should be sorted in ascending order when a model
data is loaded or when sort operation is performed after adding new data. We do so by
specifying the name of the field in the sort keys.

Finally, we need to define a workbook that consists of a worksheet based on the defined
template applied to an instance of a SyncTable.

The final content of the configuration file is as follows.

The resulting file can be found inGettingStarted.MSE, in the MapleMBSE Configuration
Editor Package.

You can use the configuration file with any UMLmodel. For example, openingMapleMBSE
with this configuration file and <MapleMBSE>\Example\UserGuide\UserGuide.uml,
where <MapleMBSE> is the location where MapleMBSE is installed, gives the following
result.

1.5 An Introductory Example • 15

The SyncView area of the worksheet can be highlighted by choosing the name of the cor-
responding SyncView in the name box. The SyncView name has the following format.

_MapleMBSE_SyncView_<Worksheet Name>_<SyncView Layout Name>

You can add new packages to the model by adding rows in the SyncView area or by entering
them in the insertion area (cell B4). See theMapleMBSE User Guide, Chapter 2, Adding
Model Elements for more details.

For convenience, it is good to add a heading to the column explaining what it is and maybe
change the width of the column. Any such formating changes done when editing a model
are not saved with the model data. Instead, they should be done in a separate file called
Template File. A template file is an Excel file that has the same base name as the configur-
ation file and is placed in the same folder. MapleMBSE looks for the sheets in the workbook
that match the names of the worksheets defined by the configuration file and loads the
specified SyncViews into that sheet. To define a template file for our example, we need to
create an Excel file with the name that matches the name of the configuration file and contains
a sheet called Packages.

To create the template for this example, we define a new Excel workbook. We name one
of the sheets Packages, and delete others. The data with the package name is displayed in
column B starting with row 3. We can define the heading for the column in cell B2 and in-
crease the width of the column.

16 • 1 Getting Started

We save the template file with the same base name as the configuration file and in the same
folder. Now if we open MapleMBSE with the configuration file and the example model
UserGuide.uml we get the following.

Tip: the template file for this example can be found in GettingStarted.xls, in the same
place with GettingStarted.MSE.

Another way to create a template could be to open a model with the configuration file as
we did before, then save it as an Excel file using Add-Ins > MapleMBSE > Export To
Excel File. This way we have the right number of sheets with their names. It is also easier
to judge where the headings need to be added and how wide the columns should be. Any
model data loaded in the tables should be removed. If it is left in the template it may create
confusionwhenMapleMBSE uses the template.MapleMBSEwill load SyncViews according
to the specifications in the configuration file, so some data may be overwritten and some
may not, depending on the model file with which the template is opened.

1.5 An Introductory Example • 17

18 • 1 Getting Started

2 Configuration Language Fundamentals
2.1 Notation
The formal grammar of MSE Configuration Language is given using a simple Extended
Backus-Naur Form (EBNF) notation. Each rule in the grammar defines one symbol, in the
form:

symbol ::= expression

The following notations are used in expressions.
UsageNotation
literal string matching the string between the quotes'string'

expression is treated as a unit(expression)

0 or more occurrences of AA*

1 or more occurrences of AA+

0 or 1 occurrence of AA?

A or BA | B

name of an element of type A<A>

For reference see https://www.w3.org/TR/2008/REC-xml-20081126/#sec-notation

2.2 Overview of an MSE Configuration File
The following is the formal definition of the configuration file.

MSEConfiguration ::= EcoreImport*

WorkbookInstance &
(DataSource
| SyncTableSchema
| SyncTable
| WorksheetTemplate
)*

In MSEConfiguration, EcoreImports come first, and then other elements can be specified
in any order. The definitions of the elements are given in the following chapters. The fol-
lowing is an example of the procedure for writing an MSE Configuration file.

1. Define a Data Source and a SyncTable Schema.

2. Define a SyncTable with the pair of Data Source and SyncTable Schema.

3. Define the view and the layout of the SyncTable on WorksheetTemplate.

19

4. Define a worksheet in the WorkbookInstance with the pair of the WorksheetTemplate
and SyncTable.

2.3 EcoreImport
EcoreImport declares the type of model to be edited with the configuration file. A type of
model is defined by specifying an IRI of a metamodel definition. A metamodel, called an
Ecore, defines types of elements a model may have and their relationship. Model elements
and their attributes are queried using the structural elements defined by EcoreImports. The
formal syntax of EcoreImport declaration is as follows.

'import-ecore' '"'IRI'"' ('as'
ID)

::=EcoreImport

In the 'import-ecore' '"'IRI'"' ('as' ID) (page 20), IRI is an identifier of the Ecore
metamodel in the form of IRI (International Resource Identifier). Different types of models
have their own metamodels. The following is a list of the available Ecore models.

IRIType
http://www.eclipse.org/uml2/4.0.0/UMLUML
http://www.eclipse.org/papyrus/sysml/1.4/SysMLSysML
http://www.nomagic.com/magicdraw/UML/2.5Teamwork

Cloud 18.5
http://www.nomagic.com/magicdraw/UML/2.5.1Teamwork

Cloud 19.0
http://w3.ibm.com/Rhapsody/api/Rhapsody
http://maplembse.maplesoft.com/common/1.0MapleMBSE

metamodel

20 • 2 Configuration Language Fundamentals

3 Query Path Expression
3.1 Query Path Expression Definition
Query Path Expression is an expression that queries the model for model elements and at-
tribute values. It is used in defining Data Sources and SyncTable Schemas. The formal
syntax definition is as follows.

(LocalQueryExpression)+ ('@'
ReferenceDecompositionId)?

::=QueryPathExpression

(('/' AttributeId) | ('.' ReferenceId))
Qualifier?

::=LocalQueryExpression

(EcoreImportId '::')? <Attribute>::=AttributeId

(EcoreImportId '::')? <Reference>::=ReferenceId

'[' ClassifierId ('|' AttributeFilter (','
AttributeFilter)*)? ']'

::=Qualifier

(EcoreImportId '::')? <Classifier>::=ClassifierId

AttributeId '=' '"' <Expression> '"'::=AttributeFilter

ReferenceDecompositionId refers to ID of a ReferenceDecomposition defined in
ReferenceDecomposition and ReferenceQuery (page 34).

<Classifier>, <Attribute>, <Reference> refer to the corresponding UML
elements, Classifier, Attribute and Reference. The names and their types are defined by a
metamodel (via EcoreImport (page 20)). In Query Path Expressions we distinguish the
following three types.

• Classifier
A type of an element. For example, a UML model may have elements of type Class.
Class is a Classifier. An element contains subelements which can be of two types: attributes
and references.

• Attribute
A subelement that belongs to the element.

• Reference
A subelement that refers to another element.

To illustrate these types and their relations consider the example code below. The code is
a snippet from the UML example model from the MapleMBSE User Guide.

Tip: The model file, UserGuide.uml, can be opened using any text editor. It can be found
in the installation folder <MapleMBSE>/Example/UserGuide, where <MapleMBSE> is
the location of your MapleMBSE installation.

21

The text representation of the model is written in XML. The model and its content are rep-
resented by XML elements. An element can be defined as an empty element with attributes.
<element ... />

Or if it contrains other elements it can be defined using the start and end tags.
<element> ... </element>

The classifiers are highlighted in blue: "uml:Class", "uml:LiteralInteger", "uml:LiteralUn-
limitedInteger", "uml:Association". The "uml" namespace is defined in the definition of the
Model element, see Getting Started (page 1). Consider the ownedAttribute element
Property1 in Class1. The attributes of the element are highlighted in green: name, visibility,
aggregation, lowerValue, upperValue. The references of Property1 are highlighted in orange:
type and association. You can see that the values of the references are the IDs of the elements
they refer to.

The names of Classifiers, Attributes, and References can be written with or without Ecor-
eImportId depending on how EcoreImport was declared. If there is only one EcoreImport
in a configuration file and it was declared without an ID:

EcoreImportId is not necessary. In this case, a query path expression that queries elements
of a package can be written as follows.
/packagedElement

If an EcoreImport was declared with an ID:

22 • 3 Query Path Expression

EcoreImportId must be used to refer to classifiers, attributes, or references defined by the
corresponding model. The same Query Path Expression takes the form.
/uml::packagedElement

In the following examples we omit EcoreImportId. The above examples of Query Path
Expressions query all elements in a package. For the above example of a query path expres-
sion, it would include elements of types Class and Association. If we want to specify that
only elements of Class type should be queried we need to specify a Qualifier:
/packagedElement[Class]

A qualifier can include one or more FeatureFilters. For example, to query a class inside a
package called Class1, the following Query Path Expression can be used.
/packagedElement[Class|name="Class1"]

The examples we have considered so far consisted of single LocalQueryExpressions. Loc-
alQueryExpressions can be combined to query nested objects. Each subsequent LocalQuery-
Expression applies to the result of the previous LocalQueryExpression. For example, to
query attributes (the ownedAttribute elements) inside Class1 inside a package, the following
Query Path Expression can be used.
/packagedElement[Class|name="Class1"]/ownedAttribute

So far, we have only used attributes in query expressions. To query a type of an ownedAt-
tribute in a class a reference must be used.
/packagedElement[Class|name="Class1"]/ownedAttribute.type

The result of the query is the element that the 'type' reference refers to. For Property1, it
would return class Class2. Another way to specify a reference is to add the specification of
ReferenceDecomposition at the end of the Query Path Expression.
/packagedElement[Class|name="Class1"]/ownedAttribute.type @
ReferenceDecompositionId

ReferenceDecomposition is defined in Chapter 6, see ReferenceDecomposition and
ReferenceQuery (page 34) . ReferenceDecomposition is a description of the referenced
object. For display purposes there is no difference between a reference query with and
without the use of ReferenceDecomposition. However, when updating a field specified by
a reference without a ReferenceDecomposition, the updates apply to the referenced object.
Whereas, with a ReferenceDecomposition the updatesmay changewhich object the reference
points to. It is not recommended to use references without ReferenceDecompositions. If
necessary, they should only be used in read-only worksheets.

3.1 Query Path Expression Definition • 23

24 • 3 Query Path Expression

4 Data Source
Data Source defines a set of model elements. A Data Source is combined with a SyncTable
Schema to create a SyncTable for the model elements defined by the Data Source. The
following is the formal definition of Data Source.

PrimaryDataSource | ChainedDataSource:: =DataSource

'data-source' (ID|'Root'|'ROOTS') '*'?
Qualifier

:: =PrimaryDataSource

'data-source' ID '=' DataSource
ObjectQueryExpression

:: =ChainedDataSource

Root is a reserved Data Source name that refers to the top-level model element. The type
of the top-level model element depends on the type of a model. Definitions of the Root Data
Source are based on the type of model, as shown in the Root Data Source
Definition (page 25) table.

Root Data Source DefinitionType of Model
UML, SysML, Teamwork Cloud

Rhapsody

AChainedDataSource applies Query Path Expression to the result of the parent Data Source.
Consider the example in the Figure below based on UserGuide.uml model (found in
<MapleMBSE>/Example/UserGuide, where <MapleMBSE> is theMapleMBSE install-
ation directory). The Figure Figure 4.1 (page 25)) shows the relationship between the ele-
ments. For each element its classifier is given in italics. The elements enclosed in boxes
with dashed lines are included in the corresponding data sources defined below.

Figure 4.1: Relationship between model elements

25

• Primary Data Source
The example is a UML model, so the Primary Data Source is defined as follows.

In the code snippet above, the data-source retrieves the top-level element of the UML user
model (user resource).

• All Primary Data Source

In the code snippet above, the data-source retrieves all Classes regardless of their location
inside the resource set. In other words, all Classes are retrieved, whether they are the model,
or outside the model (for example, user resource, project resource, etc. or the model. In the
example above Class1, Class2 and Class3 are retrieved.

This type of Primary Data Source is very useful, however, it should be used only to make
read-only SyncTable (page 39) and ReferenceDecomposition and ReferenceQuery
(page 34)reference-decomposition.

Example for primitive DataTypes:

• Chained Data Source
The following Data Source, called "classes", defines a set of all classes in Package1. It
is defined by applying an Query Path Expression to a previously defined data source. In
this case, the top-level data source, Root. In the example shown in Figure 4.1 (page 25),
Root is UserGuide.

26 • 4 Data Source

5 SyncTable Schema
5.1 SyncTable Schema Definition
A SyncTable schema specifies how model elements are mapped to a logical table. With
data sources explained in Data Source (page 25), model elements are first organized as
trees, and then mapped to tables. Such tree nodes are defined by dimensions in SyncTable
schema, which identifies a model element by key columns. The formal syntax of SyncT-
ableSchema is defined as:

'synctable-schema' ID ('(' SyncTableParam (','
SyncTableParam)* ')')?
'{' TopLevelDimension AbstractDimension* '}'

::=SyncTableSchema

ID ':' SyncTableSchemaId::=SyncTableParam

('record')? 'dim' Qualifier '{' DimensionMember*
'}'

::=TopLevelDimension

SuccessiveDimension | DimensionGroup::=AbstractDimension

('record')? dim QueryPathExpression '{'
DimensionMember* '}'

::=SuccessiveDimension

('alternative'|'optional'|'group') '{'
DimensionMember* '}'

::=DimensionGroup

PropertyMapping | ReferenceDecomposition::=DimensionMember

AttributeColumn | ReferenceQuery::=PropertyMapping

KeyAttributeColumn | NonkeyAttributeColumn::=AttributeColumn

'key' 'column' ObjectQueryExpression 'as' ID::=KeyAttributeColumn

'column' ObjectQueryExpression 'as' ID::=NonkeyAttributeColumn

whereSyncTableSchemaId is ID of aSyncTableSchema, andTopLevelDimen-
sion appears first as defined in the formal syntax, and we need to put a qualifier to specify
what model element types are selected, then SuccessiveDimension follows in which
we put a Query Path Expression to query what model elements are selected as dimensions.
In this chapter, we explain how to specify SyncTable schemas through examples.

27

5.2 Examples of SyncTable Schema
First, we show a simple SyncTable Schema as follows:

Here we define a SyncTable Schema with an ID called PkgCls and it consists of two Di-
mensions. [REPackage] in the top level dimension means it picks up REPackage
model elements, and it must be consistent with that in data sources. The next dimension
picks up REClass elements in nestedElements feature of the top level dimension.
By applying this schema to Pkg1, Pkg2 of the data source having Figure 4.1, we obtain
two trees as shown in Figure 5.1, where Pkg1 and Pkg2 belong to the top level dimensions;
and Cls1 and Cls2 belong to the next dimensions.

Figure 5.1: SimpleTree

5.3 Mapping the Attribute Values of theModel Elements
to the Columns
The trees in the example above are translated into tables by the column definitions. The top
level dimension has PkgName and PkgDesc columns, and they are filled with the QPEs
of /name and /description, respectively. And the next dimension have ClsName

28 • 5 SyncTable Schema

column, which is filled with the QPE of /name. Then the tree in Figure 5.1 is translated
to:

Figure 5.2: SyncTable From Simple Tree

More formally speaking, each path in the trees is translated into record, and then we have
two records from the paths of Pkg1-Cls1 and Pkg2-Cls2. Note that synctable schema de-
termines all of the columns in a static way. They are, in this example, PkgName, PkgDesc,
and ClsName, and the number is three.

5.4 Mapping the Dimensions to the Records
Let us look at how dimensions are mapped to records in more detail by comparing with the
example below. The only difference from the previous example is the record keyword
in the top level dimension highlighted with bold font.

If any other conditions are the same as the above, the trees generated by this schema are
exactly the same as in Figure 5.1. However, because the top level dimension has a record
keyword, the table has more records as shown in Figure 5.3. The added records are the first
and third rows, which come from the top level dimension. Note that the last dimension (in
this example, that is the one corresponding to Cls) always creates records even if it is
missing. In this table, the rightmost column in the first and third rows is specially treated
as EMPTY. They will be shown as blank cells with light gray backgrounds, and distinguished
from the usual blank cells

5.4 Mapping the Dimensions to the Records • 29

Figure 5.3: SyncTable From Simple Tree (add record keyword to top level Dimension

Note that each record corresponds to one model element. In this example, the first record
corresponds to Pkg1, and the second one corresponds to Cls1 while the previous example
does not have any records corresponding to Pkg1 nor Pkg2. Therefore, in this example you
can add or delete packages by adding or removing a row while in the previous example you
cannot. In this sense, record keyword plays a vital role that determines whichmodel elements
can be added or deleted by users.

5.5 Alternative and Group Dimensions
Next, we move on to how to organize tree structures by using the following example model.
For the sake of simplicity, we denote model elements with lowercase with numbers (e.g.
a1) and its types with uppercase (e.g A) in this example.

Figure 5.4: Simplified Model Number Two: Using Alternative and Group

30 • 5 SyncTable Schema

Let us consider the following configuration:

It generates a tree as show in Figure 5.5.

The top level dimension selects type A by [A], and then the root of the tree is a1. In the
following dimensions, it selects /nestedElements[B], /nestedElements[C], or
/nestedElements[D] because these are in alternative { ... } clause. That
means that if /nestedElements[B] is matched, the second dimension is used; if
/nestedElements[C] is matched, the third dimension is used; and if /nestedEle-
ments[D] is matched, the forth dimension is used. Therefore, d0, the first model element
in the nestedElements feature, is applied to the forth dimension; b1 and b2 are applied to
the third dimension; and c1 is applied to the forth dimension. And then, we obtain a tree
shown in Figure 5.5.

Figure 5.5: Tree From Simplified Model Two

This tree will be turned into a table as shown in Figure 5.6. It has four columns consisting
of Aname, Bname, Cname, and Dname. Since the top level dimension does not have a

5.5 Alternative and Group Dimensions • 31

record keyword, it does not have a record of a1. Instead it creates four records for b1,
b2, c1, and d0 corresponding to the tree nodes under "a1" in Figure 5.5. Notice that the
record for c1 in the third row fills Aname and Cname columns, and Bname column is
specially treated as VOID, which looks blank but filledwith thick gray background. Likewise,
the second (Bname) and third (Cname) columns in the forth row are also filled with VOID.

Figure 5.6: Table Made From The Tree of Simplified Model Two

Let us move on to the next example using group as shown below:

It generates a tree as shown in Figure 5.7.

The difference is that now d1 belongs to c1 instead of a1 because the above configuration
says B or C followed by D rather than B, C, or D. It means something like (B or (C, D)) in
contrast with (B or C or D). That is, group keyword is something like parentheses in dimen-
sion definitions and alternative is like the or operator.

32 • 5 SyncTable Schema

Then this tree is translated to a table as shown in Figure 5.8. Since the dimensions of B and
D have a record keyword, it creates three records: b1, b2, and d1, corresponding to the first,
second, and third rows. The third and fourth columns that follow after b1 and b2, in the
first and second rows, are EMPTY and the second column in the third row is VOID in this
table.

Figure 5.7: Another Tree Made From Simplified Model Two

Figure 5.8: Another Table Made From Simplified Model Two

Since group keyword combines dimensions in alternative blocks, using it out of alternative
does not give any effects. For example,

and

give the same results.

5.5 Alternative and Group Dimensions • 33

5.6 ReferenceDecomposition and ReferenceQuery
Mapping reference values with ReferenceDecomposition and
ReferenceQuery

ReferenceDecomposition is used for presenting references of model elements. The
examples so far edit model elements themselves by querying them with QPEs, where we
can track references as well. That means we always change values of such model elements
instead of references to model elements.

First we specify the formal syntaxes of ReferenceDecomposition and Refer-
enceQuery as below:

('key')? 'reference-query' ObjectQueryPath::=ReferenceQuery

'reference-decomposition' ID '='
[ReferrableSyncTable] '{' ForeignColumn* '}'

::=ReferenceDecomposition

KeyForeignColumn | NonkeyForeignColumn::=ForeignColumn

'foreign-key' 'column' [Column] 'as' ID::=KeyForeignColumn

'foreign' 'column' [Column] 'as' ID::=NonkeyForeignColumn

InReferenceDecomposition, you should specify all of the key columns in the referred
table as KeyForeignColumn (that is, you should specify "foreign-key" for such key
columns) because we should identify a record by such key columns. If the configuration
does not satisfy this condition, it is not guaranteed to identify a unique record to make a
reference.

ReferenceDecomposition by Example

We use the following code snippet to explain ReferenceDecomposition.

This configuration transforms the target model in Figure 5.9 into a table as shown in
Figure 5.10.

This example first introduces the TypesByName synctable-schema, which itemizes
all of the types as TypeName, and AttsByName refers to that type by the type feature
of REAttribute. Note that AttsByName takes the tps argument of TypesByName,
and in Line 7, the attributes synctable takes types as an argument and then the at-
tributes synctable uses types synctable to refer to types by the ReferenceDecom-
position in Lines 25-28. Let us look into these in the following section.

34 • 5 SyncTable Schema

Figure 5.9: Target Model

Figure 5.10: Illustration of ReferenceDecomposition

References by Dimensions or ReferenceQuery

Next, let us see how we identify references. As show in Line 25 of

(page 34).

5.6 ReferenceDecomposition and ReferenceQuery • 35

, we write reference-query QPE @ name in the dimension. Let us look in the part
in the example of the previous section:

In this example, we use the type feature of REAttribute as a reference to be decom-
posed. Thus, this reference refers to a type identified by the TypeName column of tps
table. This dimension hasAttName andType columns andAttName column is associated
with name feature of REAttribute of this dimension, and Type column is used to refer
to type (see the reference-query) by TypeName column of tps table.

Otherwise, if the reference is associated with a dimension, we put @ name after the dimen-
sion definition as the example below:

where we use cls2 as the name of the reference. And in the following reference-de-
composition cls2, we use PkgName and ClsName columns of clsTbl to present
that reference. Therefore, this dimension has otherClass reference of REInstance
(in the previous dimension), which refers to REClass class identified by PkgName
(propagated by PkgName2 column of this dimension) and ClsName (propagated by
ClsName2 column, likewise) columns of clsTbl. Note that clsTbl is a parameter of
the synctable-schema. Since PkgName and ClsName are key columns, we specify
the foreign-key keyword in the reference decomposition. In addition, we can edit de-
scription of the reference via ClsDesc2.

5.7 Key Columns Defined in SyncTable Schema
In a synctable-schema, we need to specify key columns to identify the recode by such
key columns. So in every dimension, we need at least one key column and all of the model
elements associated with this dimension must be uniquely identified by the defined key
columns. Key columns in dimensions are one of the followings:

1. Columns defined by key column

36 • 5 SyncTable Schema

2. All of foreign-key columns in the ReferenceDecomposition that uses references by
key reference-query or dimensions. If you use reference-query without the
key keyword, such foreign-key columns are not key columns.

5.7 Key Columns Defined in SyncTable Schema • 37

38 • 5 SyncTable Schema

6 SyncTable
A SyncTable is an intermediate structure created in the first step of converting model
data into a table from shown in an Excel spreadsheet. The definition of a SyncTable
consists in applying a SyncTable schema to a Data Source. The formal syntax of a
SyncTable definition is as follows.

'synctable' ID '=' SyncTableSchemaId '<' DataSourceId
'>' ('(' SyncTableId (',' SyncTableId)* ')')?

::=SyncTable

In the table 'synctable' ID '=' SyncTableSchemaId '<' DataSourceId '>' ('(' SyncTableId
(',' SyncTableId)* ')')? (page 39).

SyncTableSchemaId is an ID of a SyncTableSchema.

• DataSourceId is an ID of a DataSource.

• SyncTableId is an ID of a SyncTable.

39

40 • 6 SyncTable

7 Laying out SyncViews
This chapter describes how SyncTables are presented as SyncViews. All of the SyncViews
must be laid out in some worksheet in a workbook. The rest of the sections are organized
as 1) how to set up worksheets in a workbook; 2) how to lay out SyncTables in a table; and
how to lay out SyncTables in a matrix.

7.1 Setting up a Workbook and Worksheets
WhenMapleMBSE opens a model, it assigns one workbook to the model, and inWorkbook
Instance, we specify all of the worksheets managed byMapleMBSE. In each configuration,
one and only one Workbook instance must be specified.

The example below comes from Example/UserGuide.MSE, and it defines all of the
worksheets.

In the example shown “workbook’ is used to represent the arrangement of worksheets as
shown, AllElements is the name of the worksheet template and allElementsTable is the name
of the synctable that is created. By default, a worksheet is created with the name AllElements
containing the information from the corresponding worksheet-template. MapleMBSE allows
the user to create a name for the worksheet manually by using the ‘label’ attributes as
shown in the above example.
Note:When a worksheet template is created with more than one parameter they should be
separated with ‘,’ as shown above for the creating a Dependencies worksheet.

If lazy-load is specified before worksheet, MapleMBSE will load syncviews of that
worksheet when that worksheet is activated. By default, thay are loaded at the startup and
then the name of worksheet-template and its parameters follow. This means the
worksheet will be defined by the specified worksheet-template. The details of
worksheet-template are explained in the next section.

If the worksheet declaration has label="XXX", MapleMBSE regards "XXX" as the name
of the worksheet. Otherwise, the name, worksheet-template is used as the name of
the worksheet. For example, AllElementswill be the name of the worksheet defined by

41

worksheet AllElements(allElementsTable). If the Excel template has the
worksheet with the same name, MapleMBSE will use this worksheet to initialize the syn-
cviews ofworksheet-template. Otherwise,MapleMBSEwill create a newworksheet
with the same name.

7.2 Worksheet Template and View Layout
Aworksheet template is used to define how a SyncTable should be represented in the Excel
worksheet. In a worksheet template, we can specify one or more ViewLayouts, each of
which can be a table view layout or a matrix view layout, in the following subsections re-
spectively.

The formal syntax of worksheet template is as follows.
'worksheet-template' ID '(' WorksheetTemplateParam
(',' WorksheetTemplateParam)* ')'
'{' ViewLayout* '}'

::=WorksheetTemplate

TableViewLayout | MatrixViewLayout::=ViewLayout

where ID means the name of the worksheet template and should be referred by worksheet
definitions explained in the previous section.

Important: Do not use an All Primary Data Source (page 26) directly in the workbook as
WorksheetTemplateParam;

Table View Layout

Table view layout allows the user to define how the contents of themodel should be displayed
in the table. It has two possible arrangements: vertical or horizontal. The syntax for table
view layout is as show above. To define a table layout: you must specify the arrangement
of the table, the cell address to define the location of table in Excel, and the order of the
fields. A column can be populated with either mapped or unmapped fields; a mapped field
displays the attributes or value assigned to it whereas an unmapped field is used to insert a
blank column within the table. Based on how fields are declared in the synctable schema
as key column or column inside the view layout they are declared as key field or field re-
spectively. It is necessary to provide the column type as string or integer for every field that
is created except for the unmapped field.

The formal syntax of table view layouts is as follows.
('vertical' | 'horizontal') 'table' ID at'
CellAddr

::=TableViewLayout

'=' WorksheetTemplateParam '{'
('import-order' INT)? & ('enable-import'

42 • 7 Laying out SyncViews

BoolType)?
ViewColumn*(SortKeys)? '}'

MappedViewColumn | UnmappedViewColumn::=ViewColumn

KeyViewColumn | NonkeyViewColumn::=MappedViewColumn

'key' ‘ref’? 'field' [KeyColumn] ':'
ViewColumnType

::=KeyViewColumn

‘ref’? 'field' [Column] ':' ViewColumnType::=NonkeyViewColumn

'unmapped-field'::=UnmappedViewColumn

('String' | 'Integer' | 'Double')'[]'? (';'
'delimiter' '=')? & (';' 'quote' '=' STRING)?

:ViewColumnType

The following code snippet comes fromUserGuide.MSEwhich defines a table view layout.

In the example shown above, a worksheet template with ID AllElements is created for
a synctable-schema, AllElementsTable that is assigned to a parameter cls.
Line 2 defines that the table is arranged vertically and (3, 2)means it should be displayed
from Row 3 and Column B in Excel as show in the figure below. Line 3 to line 12 in the
example defines the order in which fields have to be displayed in Excel, shown as Table
View in the figure. In line 3 in the sample, key field is used for PackageName because
it was specified as key column in the synctable schema for AllElementsTable.
Column type for every field is provided as shown from line 3 to line 12, in the example
shown String is the type for all fields. To specify type integer, use Int instead of
String. sort-keys are used to indicate the columns that should be sorted in ascending
order when model data is loaded or when new data is added to the table.
Predefined Row in the figure below denotes that the Excel sheet can be formatted based on
user preference before the model is loaded in the Excel sheet.

7.2 Worksheet Template and View Layout • 43

Matrix View Layout

A matrix view layout consists of three parts, row index table view part, column index table
view part, and matrix part, as shown in the following example:

The formal syntax of matrix view layout is as follows.
'matrix' ID 'at' CellAddr
'=' [WorksheetTemplateParam] '{'
('import-order' INT)? &

::=MatrixViewLayout

('enable-import' BoolType)?
ViewColumn

44 • 7 Laying out SyncViews

MatrixRowIndexViewLayout &
MatrixColumnIndexViewLayout

'}'

'row-index' '=' [WorksheetTemplateParam]
'{' ViewColumn* (sortKeys=SortKeys)?
'}'

::=MatrixRowIndexViewLayout

'column-index' '='
[WorksheetTemplateParam]
'{' ViewColumn* (sortKeys=SortKeys)?

::=MatrixColumnIndexViewLayout

'}'

Row and column index tables identify which cell in a matrix should be selected to show a
record of the synctable. The following code snippet comes from UserGuide.MSE which
defined matrix view layout.

In this example, Lines 2 to 16 defines matrix layout with the name of Matrix1 created by
mat, that is DependenciesTable (see parameters of Dependencies). const-field
means a matrix cell should be filled with the specified value if and only if the corresponding
record exists. You can specify some column instead of const-field. For example, if
you specify field DepName : String, you can edit DepName in matrix cells.
However, you can specify only one field for a matrix view layout.

Lines 4 to 9 define a row index table, and Lines 10 to 15 define a column index table. Using
this configuration,DependentTable (row index table) needs to haveDependentPack-
ageName and DependentClassName columns, and SupplierTable (column index
table) needs to have SupplierPackageName and SupplierClassName columns,
and finally, DependenciesTable (matrix table) needs to have all of the columns, those
are DependentPackageName, DependentClassName, SupplifierPackage-

7.2 Worksheet Template and View Layout • 45

Name, andSupplierClassName. InDependenciesSheet, we can showDependenci-
esTable in a vertical table as below:

A synctable used to present in a Matrixmust have all of the same key columns of row and
column index tables. In this example, DependenciesTable (synctable to be shown in
a matrix) must have DependentPackageName and DependentClassName that are
the key columns of row index table (DependentTable), andSupplierPackageName
and SupplierClassName that are key columns of column index table (SupplierT-
able). Notice that all of the column names must be unique.

46 • 7 Laying out SyncViews

	MapleMBSE Configuration Guide
	Contents
	Introduction
	1 Getting Started
	1.1 Introduction
	1.2 Overview of MapleMBSE Mapping
	1.3 MSE Configuration Editor
	1.4 Creating a Configuration File
	1.5 An Introductory Example

	2 Configuration Language Fundamentals
	2.1 Notation
	2.2 Overview of an MSE Configuration File
	2.3 EcoreImport

	3 Query Path Expression
	3.1 Query Path Expression Definition

	4 Data Source
	5 SyncTable Schema
	5.1 SyncTable Schema Definition
	5.2 Examples of SyncTable Schema
	5.3 Mapping the Attribute Values of the Model Elements to the Columns
	5.4 Mapping the Dimensions to the Records
	5.5 Alternative and Group Dimensions
	5.6 ReferenceDecomposition and ReferenceQuery
	Mapping reference values with ReferenceDecomposition and ReferenceQuery
	ReferenceDecomposition by Example
	References by Dimensions or ReferenceQuery

	5.7 Key Columns Defined in SyncTable Schema

	6 SyncTable
	7 Laying out SyncViews
	7.1 Setting up a Workbook and Worksheets
	7.2 Worksheet Template and View Layout
	Table View Layout
	Matrix View Layout

